Deber: Subraye las ideas principales y secundarias y elabore un mapa conceptual sobre lo entendido, incluyendo los ejemplos propuestos en el mismo libro.
Matriz (matemáticas)
En matemática, una matriz es un arreglo bidimensional de números. Dado que puede definirse tanto la suma como el producto de matrices, en mayor generalidad se dice que son elementos de un anillo. Una matriz se representa por medio de una letra mayúscula(A,B..) y sus elementos con la misma letra en minúscula (a,b...), con un doble subíndice donde el primero indica la fila y el segundo la columna a la que pertenece.
Los elementos individuales de una matriz x , a menudo denotados por y , donde el máximo valor de sus elementos (, ) en es , y el máximo valor de es . Siempre que la matriz tenga el mismo número de filas y de columnas que otra matriz, estas se pueden sumar o restar elemento por elemento.
Las matrices se utilizan para múltiples aplicaciones y sirven, en particular, para representar los coeficientes de los sistemas de ecuaciones lineales o para representar transformaciones lineales dada una base. En este último caso, las matrices desempeñan el mismo papel que los datos de un vector para las aplicaciones lineales.
Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal.
Índice
[ocultar]Historia[editar]
Año | Acontecimiento |
---|---|
200 a.C. | En China los matemáticos usan series de números. |
1848 | J. J. Sylvester introduce el término «matriz». |
1858 | Cayley publica Memorias sobre la teoría de matrices. |
1878 | Frobenius demuestra resultados fundamentales en álgebra matricial. |
1925 | Heisenberg utiliza la teoría matricial en la mecánica cuántica |
El origen de las matrices es muy antiguo. Los cuadrados latinos y los cuadrados mágicos se estudiaron desde hace mucho tiempo. Un cuadrado mágico, 3 por 3, se registra en la literatura china hacia el 650 a. C.2
Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un importante texto matemático chino que proviene del año 300 a. C. a 200 a. C., Nueve capítulos sobre el Arte de las matemáticas (Jiu Zhang Suan Shu), es el primer ejemplo conocido de uso del método de matrices para resolver un sistema de ecuaciones simultáneas.3 En el capítulo séptimo, "Ni mucho ni poco", el concepto de determinante apareció por primera vez, dos mil años antes de su publicación por el matemático japonés Seki Kōwa en 1683 y el matemático alemán Gottfried Leibniz en 1693.
Los "cuadrados mágicos" eran conocidos por los matemáticos árabes, posiblemente desde comienzos del siglo VII, quienes a su vez pudieron tomarlos de los matemáticos y astrónomos de la India, junto con otros aspectos de las matemáticas combinatorias. Todo esto sugiere que la idea provino de China. Los primeros "cuadrados mágicos" de orden 5 y 6 aparecieron en Bagdad en el 983, en la Enciclopedia de la Hermandad de Pureza (Rasa'il Ihkwan al-Safa).2
Después del desarrollo de la teoría de determinantes por Seki Kowa y Leibniz para facilitar la resolución de ecuaciones lineales, a finales del siglo XVII, Cramer presentó en 1750 la ahora denominada regla de Cramer. Carl Friedrich Gauss y Wilhelm Jordan desarrollaron la eliminación de Gauss-Jordan en el siglo XIX.
En 1853, Hamilton hizo algunos aportes a la teoría de matrices. Cayley introdujo en 1858 la notación matricial, como forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
Cayley, Hamilton, Hermann Grassmann, Frobenius, Olga Taussky-Todd y John von Neumann cuentan entre los matemáticos famosos que trabajaron sobre la teoría de las matrices. En 1925, Werner Heisenberg redescubre el cálculo matricial fundando una primera formulación de lo que iba a pasar a ser la mecánica cuántica. Se le considera a este respecto como uno de los padres de la mecánica cuántica.
Olga Taussky-Todd (1906-1995), durante la II Guerra Mundial, usó la teoría de matrices para investigar el fenómeno de aeroelasticidad llamado fluttering.
Introducción[editar]
Definición[editar]
Una matriz es un arreglo bidimensional de números (llamados entradas de la matriz) ordenados en filas (o renglones) y columnas, donde una fila es cada una de las líneas horizontales de la matriz y una columna es cada una de las líneas verticales. A una matriz con m filas y n columnas se le denomina matriz m-por-n (escrito ) donde . El conjunto de las matrices de tamaño se representa como , donde es el campo al cual pertenecen las entradas. El tamaño de una matriz siempre se da con el número de filas primero y el número de columnas después.
Dos matrices se dice que son iguales si tienen el mismo tamaño y los mismos elementos en las mismas posiciones.A la entrada de una matriz que se encuentra en la fila ésima y la columna ésima se le llama entrada o entrada -ésimo de la matriz. En estas expresiones también se consideran primero las filas y después las columnas.
Para definir el concepto de matriz, el término "arreglo bidimensional" es útil, aunque poco formal, pero puede formalizarse usando el concepto de función. De este modo, una matrizde n filas y m columnas con entradas en un campo es una función cuyo dominio es el conjunto de los pares ordenados , donde y , y cuyo contradominio es . Con esta definición, la entrada es el valor de la función en el par ordenado .
Se denota a las matrices con letra mayúscula, mientras que se utiliza la correspondiente letra en minúsculas para denotar a las entradas de las mismas, con subíndices que refieren al número de fila y columna del elemento.4Por ejemplo, al elemento de una matriz de tamaño que se encuentra en la fila ésima y la columna ésima se le denota como , donde y .
Cuando se va a representar explícitamente una entrada la cual está indexada con un o un con dos cifras se introduce una coma entre el índice de filas y de columnas. Así por ejemplo, la entrada que está en la primera fila y la segunda columna de la matriz de tamaño se representa como mientras que la entrada que está en la fila número 23 y la columna 100 se representa como .
Además de utilizar letras mayúsculas para representar matrices, numerosos autores representan a las matrices con fuentes en negrita para distinguirlas de otros objetos matemáticos.[cita requerida] Así es una matriz, mientras que es un escalar en esa notación. Sin embargo esta notación generalmente se deja para libros y publicaciones, donde es posible hacer esta distinción tipográfica con facilidad. En otras notaciones se considera que el contexto es lo suficientemente claro como para no usar negritas.
Otra notación, en sí un abuso de notación, representa a la matriz por sus entradas, i.e. o incluso .
Como caso particular de matriz, se definen los vectores fila y los vectores columna. Un vector fila o vector renglón es cualquier matriz de tamaño mientras que un vector columna es cualquier matriz de tamaño .
A las matrices que tienen el mismo número de filas que de columnas, , se les llama matrices cuadradas y el conjunto se denota
Ejemplo[editar]
Dada la matriz
es una matriz de tamaño . La entrada es 7.
La matriz
es una matriz de tamaño : un vector fila con 9 entradas.