domingo, 1 de julio de 2018

Segundo BGU, Física.

Buenas tardes estudiantes.

Deber: Realice el ejercicio 20 de la página 105.

Leyes de Kepler

Ir a la navegaciónIr a la búsqueda
Representación gráfica de las leyes de Kepler. El Sol está situado en uno de los focos. En tiempos iguales, las áreas barridas por el planeta son iguales. Por lo tanto, el planeta se moverá más rápidamente cerca del Sol.
Las leyes de Kepler fueron enunciadas por Johannes Kepler para describir matemáticamente el movimiento de los planetas en sus órbitasalrededor del Sol.1​Aunque él no las describió así, en la actualidad se enuncian como sigue:
Primera ley (1609)
Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas. El Sol se encuentra en uno de los focos de la elipse.
Segunda ley (1609)
El radio vector que une un planeta y el Sol recorre áreas iguales en tiempos iguales.
La ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio).
El afelio y el perihelio son los dos únicos puntos de la órbita en los que el radio vector y la velocidad son perpendiculares. Por ello solo en esos dos puntos el módulo del momento angular  se puede calcular directamente como el producto de la masa del planeta por su velocidad y su distancia al centro del Sol.
En cualquier otro punto de la órbita distinto al Afelio o al Perihelio el cálculo del momento angular es más complicado, pues como la velocidad no es perpendicular al radio vector, hay que utilizar el producto vectorial
Tercera ley (1618)
Para cualquier planeta, el cuadrado de su período orbital es directamente proporcional al cubo de la longitud del semieje mayor de su órbita elíptica.
Donde, T  es el período orbital (tiempo que tarda en dar una vuelta alrededor del Sol), a  la distancia media del planeta con el Sol y C  la constante de proporcionalidad.
Estas leyes se aplican a otros cuerpos astronómicos que se encuentran en mutua influencia gravitatoria, como el sistema formado por la Tierra y el sol.

Formulación de Newton de la tercera ley de Kepler[editar]

Antes de que se redactaran las leyes de Kepler hubo otros científicos como Claudio PtolomeoNicolás Copérnico y Tycho Brahe cuyas principales contribuciones al avance de la ciencia estuvieron en haber conseguido medidas muy precisas de las posiciones de los planetas y de las estrellas. Kepler, que fue discípulo de Tycho Brahe, aprovechó todas estas mediciones para poder formular su tercera ley.
Kepler logró describir el movimiento de los planetas. Utilizó los conocimientos matemáticos de su época para encontrar relaciones entre los datos de las observaciones astronómicas obtenidas por Tycho Brahe y con ellos logró componer un modelo heliocéntrico del universo. Comenzó trabajando con el modelo tradicional del cosmos, planteando trayectorias excéntricas y movimientos en epiciclos, pero encontró que los datos de las observaciones lo situaban fuera del esquema que había establecido Copérnico, lo que lo llevó a concluir que los planetas no describían una órbita circular alrededor del Sol. Ensayó otras formas para las órbitas y encontró que los planetas describen órbitas elípticas, las cuales tienen al Sol en uno de sus focos. Analizando los datos de Brahe, Kepler también descubrió que la velocidad de los planetas no es constante ,2​ sino que el radio vector que une al Sol (situado en uno de los focos de la trayectoria elíptica) con un planeta determinado, describe áreas iguales en tiempos iguales. En consecuencia, la velocidad de los planetas es mayor cuando están próximos al Sol (perihelio) que cuando se mueven por las zonas más alejadas (afelio). Esto da origen a las tres Leyes de Kepler sobre el movimiento planetario.
Las leyes de Kepler representan una descripción cinemática del sistema solar.
  • Primera Ley de Kepler: Todos los planetas se mueven alrededor del Sol siguiendo órbitas elípticas. El Sol está en uno de los focos de la elipse.
  • Segunda Ley de Kepler: Los planetas se mueven con velocidad areolar constante. Es decir, el vector posición r de cada planeta con respecto al Sol barre áreas iguales en tiempos iguales.
Se puede demostrar que el momento angular es constante lo que nos lleva a las siguientes conclusiones:
Las órbitas son planas y estables.
Se recorren siempre en el mismo sentido.
La fuerza que mueve los planetas es central.
  • Tercera Ley de Kepler: Se cumple que para todos los planetas, la razón entre el periodo de revolución al cuadrado y el semieje mayor de la elipse al cubo se mantiene constante. Esto es:
El estudio de Newton de las leyes de Kepler condujo a su formulación de la ley de la gravitación universal.
La formulación matemática de Newton de la tercera ley de Kepler para órbitas circulares es:
La fuerza gravitacional crea la aceleración centrípeta necesaria para el movimiento circular de radio a:
recordando la expresión que relaciona la velocidad angular y el período de revolución:
de donde se deduce que el cuadrado del tiempo de una órbita completa o periodo es:
,
y despejando:
,
donde  es la constante de Kepler, T  es el periodo orbitala  el semieje mayor de la órbita, M es la masa del cuerpo central y G  una constante denominada Constante de gravitación universal cuyo valor marca la intensidad de la interacción gravitatoria y el sistema de unidades a utilizar para las otras variables de esta expresión. Esta expresión es válida tanto para órbitas circulares como elípticas.
En realidad  no es constante, pues esta última expresión es solo una aproximación de la expresión más general que se deduce con todo rigor de las Leyes de Newton y que es:
Donde  es la masa del cuerpo central y  la del astro que gira en torno a él. Como en el Sistema Solar la masa del Sol es muy superior a la de cualquier planeta,  y la expresión simplificada se obtiene de la más general haciendo 

No hay comentarios:

Publicar un comentario