miércoles, 5 de diciembre de 2018

Tercero matemática.

Buenos días estudiantes.

Deber: Lea, analice y subraye las ideas principales y secundarias en el libro, además realice un mapa conceptual de las paginas expuestas en hojas de papel ministro, OBSERVAR Y ANALIZAR LOS EJERCICIOS RESUELTOS EN LAS PAGINAS PLANTEADAS.
ACTIVIDADES A REALIZAR: (Act: 3, Pág.: 185 todos)

Estadística

Ir a la navegaciónIr a la búsqueda
La estadística (la forma femenina del término alemán Statistik, derivado a su vez del italiano statista, "hombre de Estado")1​es una rama de las matemáticas y una herramienta que estudia usos y análisis provenientes de una muestra representativa de datos, que busca explicar las correlaciones y dependencias de un fenómeno físico o natural, de ocurrencia en forma aleatoria o condicional.
Es transversal a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad. Además, se usa en áreas de negocios o instituciones gubernamentales ya que su principal objetivo es describir al conjunto de datos obtenidos para la toma de decisiones o bien, para realizar generalizaciones sobre las características observadas.
En la actualidad, la estadística es una ciencia que se encarga de estudiar una determinada población por medio de la recolecciónrecopilación e interpretación de datos. Del mismo modo, también es considerada una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo.
La estadística se divide en dos grandes áreas:
Ambas ramas (descriptiva e inferencial) comprenden la estadística aplicada, pero la estadística inferencial, por su parte, se divide en estadística paramétrica y estadística no paramétrica.
Existe también una disciplina llamada estadística matemática, la que se refiere a las bases teóricas de la materia. La palabra «estadísticas» también se refiere al resultado de aplicar los algoritmos estadísticos a un conjunto de datos, como en estadísticas económicasestadísticas criminales, etcétera.

Historia[editar]

Origen[editar]

El término alemán Statistik, introducido originalmente por Gottfried Achenwall en 1749, se refería al análisis de datos del Estado, es decir, la «ciencia del Estado» (o más bien, de la ciudad-estado). También se llamó aritmética política de acuerdo con la traducción literal del inglés. No fue hasta el siglo XIX cuando el término estadística adquirió el significado de recolectar y clasificar datos. Este concepto fue introducido por el militar británico sir John Sinclair (1754-1835).
En su origen, por tanto, la estadística estuvo asociada a los Estados o ciudades libres, para ser utilizados por el gobierno y cuerpos administrativos (a menudo centralizados). La colección de datos acerca de estados y localidades continúa ampliamente a través de los servicios de estadística nacionales e internacionales. En particular, los censoscomenzaron a suministrar información regular acerca de la población de cada país. Así pues, los datos estadísticos se referían originalmente a los datos demográficos de una ciudad o Estado determinados. Y es por ello que en la clasificación decimal de Melvil Dewey, empleada en las bibliotecas, todas las obras sobre estadística se encuentran ubicadas al lado de las obras de o sobre la demografía.
Ya se utilizaban representaciones gráficas y otras medidas en pieles, rocas, palos de madera y paredes de cuevas para controlar el número de personas, animales o ciertas mercancías. Hacia el año 3000 a. C. los babilonios usaban ya pequeños envases moldeados de arcilla para recopilar datos sobre la producción agrícola y de los géneros vendidos o cambiados. Los egipcios analizaban los datos de la población y la renta del país mucho antes de construir las pirámides en el siglo XI a. C. Los libros bíblicos de Números y Crónicas incluyen en algunas partes trabajos de estadística. El primero contiene dos censos de la población de la Tierra de Israel y el segundo describe el bienestar material de las diversas tribus judías. En China existían registros numéricos similares con anterioridad al año 2000 a. C. Los antiguos griegos realizaban censos cuya información se utilizaba hacia el 594 a. C. para cobrar impuestos.

Empleo de la estadística en las antiguas civilizaciones[editar]

En la Edad Antigua, la estadística consistía en elaborar censos (de población y tierras). Su objetivo era facilitar la gestión de las labores tributarias, obtener datos sobre el número de personas que podrían servir en el ejército o establecer repartos de tierras o de otros bienes.
  • En Egipto: La estadística comienza con la Dinastía I, en el año 3050 a. C. Los faraones ordenaban la realización de censos con la finalidad de obtener los datos sobre tierras y riquezas para poder planificar la construcción de las pirámides.
  • En China: Año 2238 a. C. el emperador Yao elabora un censo general sobre la actividad agrícola, industrial y comercial.
  • En la Antigua Grecia: Se realizaron censos para cuantificar la distribución y posesión de la tierra y otras riquezas, organizar el servicio militar y determinar el derecho al voto.
  • En la Antigua Roma: Durante el Imperio romano se establecieron registros de nacimientos y defunciones, y se elaboraron estudios sobre los ciudadanos, sus tierras y sus riquezas.
  • En México: Año 1116, durante la segunda migración de las tribus chichimecas, el rey Xólotl ordenó que fueran censados los súbditos.
  • En el Oriente Medio, bajo el dominio sumerioBabilonia tenía casi 6000 habitantes. Se encontraron en ella tablillas de arcilla que registraban los negocios y asuntos legales de la ciudad.
  • El censo en el pueblo judío sirvió, además de propósitos militares, para calcular el monto de los ingresos del templo.

En la Edad Media[editar]

Durante la Edad Media, la estadística no presentó grandes avances, pero destaca el trabajo de Isidoro de Sevilla, quien recopiló y clasificó datos de diversa naturaleza cuyos resultados se publicaron en la obra Originum sive Etymologiarum.

En la Edad Moderna[editar]

Orígenes en probabilidad[editar]

Los métodos estadístico-matemáticos emergieron desde la teoría de probabilidad, la cual data desde la correspondencia entre Pascal y Pierre de Fermat (1654). Christian Huygens(1657) da el primer tratamiento científico que se conoce a la materia. El Ars coniectandi (póstumo, 1713) de Jakob Bernoulli y la Doctrina de posibilidades (1718) de Abraham de Moivre estudiaron la materia como una rama de las matemáticas.2​ En la era moderna, el trabajo de Kolmogórov ha sido un pilar en la formulación del modelo fundamental de la Teoría de Probabilidades, el cual es usado a través de la estadística.
La teoría de errores se puede remontar a la Ópera miscellánea (póstuma, 1722) de Roger Cotes y al trabajo preparado por Thomas Simpson en 1755 (impreso en 1756) el cual aplica por primera vez la teoría de la discusión de errores de observación. La reimpresión (1757) de este trabajo incluye el axioma de que errores positivos y negativos son igualmente probables y que hay unos ciertos límites asignables dentro de los cuales se encuentran todos los errores; se describen errores continuos y una curva de probabilidad.
Pierre-Simon Laplace (1774) hace el primer intento de deducir una regla para la combinación de observaciones desde los principios de la teoría de probabilidades. Laplace representó la Ley de probabilidades de errores mediante una curva y dedujo una fórmula para la media de tres observaciones. También, en 1871, obtiene la fórmula para la ley de facilidad del error (término introducido por Lagrange, 1744) pero con ecuaciones inmanejables. Daniel Bernoulli (1778) introduce el principio del máximo producto de las probabilidades de un sistema de errores concurrentes.
Fotografía de Ceres por el telescopio espacial Hubble. La posición fue estimada por Gauss mediante el método de mínimos cuadrados.
El método de mínimos cuadrados, el cual fue usado para minimizar los errores en mediciones, fue publicado independientemente por Adrien-Marie Legendre (1805), Robert Adrain (1808), y Carl Friedrich Gauss (1809). Gauss había usado el método en su famosa predicción de la localización del planeta enano Ceres en 1801. Pruebas adicionales fueron escritas por Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W. F. Donkin (1844, 1856), John Herschel (1850) y Morgan Crofton (1870). Otros contribuidores fueron Ellis (1844), Augustus De Morgan (1864), Glaisher (1872) y Giovanni Schiaparelli (1875). La fórmula de Peters para , el probable error de una observación simple es bien conocido.
El siglo XIX incluye autores como Laplace, Silvestre Lacroix (1816), Littrow (1833), Richard Dedekind (1860), Helmert (1872), Hermann Laurent(1873), Liagre y Didion. Augustus De Morgan y George Boole mejoraron la presentación de la teoría. Adolphe Quetelet (1796-1874), fue otro importante fundador de la estadística y quien introdujo la noción del «hombre promedio» (l’homme moyen) como un medio de entender los fenómenos sociales complejos tales como tasas de criminalidadtasas de matrimonio o tasas de suicidios.

Siglo XX[editar]

Karl Pearson, un fundador de la estadística matemática.
El campo moderno de la estadística se emergió a los principios del siglo XX dirigida por la obra de Francis Galton y Karl Pearson, quienes transformaron la estadística a convertirse en una disciplina matemática rigurosa usada por análisis, no solamente en la ciencia sino en la manufactura y la política. Las contribuciones de Galton incluyen los conceptos de desviación típicacorrelaciónanálisis de la regresión y la aplicación de estos métodos al estudio de la variedad de características —la altura, el peso entre otros—.3​ Pearson desarrolló el coeficiente de correlación de Pearson, definió como un momento-producto,4​ el método de momentos por caber las distribuciones a las muestras y la distribuciones de Pearson, entre otras cosas.5​ Galton y Pearson se fundaron Biometrika como su primera revista de la estadística matemática y la bioestadística (en aquel entonces conocida como la biometría). Pearson también fundó el primer departamento de estadística en University College de Londres.6
Durante el siglo XX, la creación de instrumentos precisos para asuntos de salud pública (epidemiologíabioestadística, etc.) y propósitos económicos y sociales (tasa de desempleoeconometría, etc.) necesitó de avances sustanciales en las prácticas estadísticas.
La segunda ola de los años 1910 y 1920 se inició William Gosset, y se culminó en la obra de Ronald Fisher, quién escribió los libros de texto que iban a definir la disciplina académica en universidades en todos lados del mundo. Sus publicaciones más importantes fueron su papel de 1918 The Correlation between Relatives on the Supposition of Mendelian Inheritance, lo cual era el primero en usar el término estadístico varianza, su obra clásica de 1925 Statistical Methods for Research Workers y su 1935 The Design of Experiments,78910​ donde desarrolló los modelos rigurosos de diseño experimental. Originó el concepto de suficiencia y la información de Fisher.11​ En su libro de 1930 The Genetical Theory of Natural Selection aplicó la estadística a varios conceptos en la biología como el Principio de Fisher12​ (sobre el ratio de sexo), el Fisherian runaway,131415161718​ un concepto en la selección sexual sobre una realimentación positiva efecto hallado en la evolución.

Estado actual[editar]

Hoy el uso de la estadística se ha extendido más allá de sus orígenes como un servicio al Estado o al gobierno. Personas y organizaciones usan la estadística para entender datos y tomar decisiones en ciencias naturales y sociales, medicina, negocios y otras áreas. La estadística es entendida generalmente no como un sub-área de las matemáticas sino como una ciencia diferente «aliada». Muchas universidades tienen departamentos académicos de matemáticas y estadística separadamente. La estadística se enseña en departamentos tan diversos como psicologíasociologíaeducación y salud pública.19
Regresión lineal – gráficos de dispersión en estadística.
Al aplicar la estadística a un problema científico, industrial o social, se comienza con un proceso o población a ser estudiado. Esta puede ser la población de un país, de granos cristalizados en una roca o de bienes manufacturados por una fábrica en particular durante un periodo dado. También podría ser un proceso observado en varios instantes y los datos recogidos de esta manera constituyen una serie de tiempo.
Por razones prácticas, en lugar de compilar datos de una población entera, usualmente se estudia un subconjunto seleccionado de la población, llamado muestra. Datos acerca de la muestra son recogidos de manera observacional o experimental. Los datos son entonces analizados estadísticamente lo cual sigue dos propósitos: descripción e inferencia.
El concepto de correlación es particularmente valioso. Análisis estadísticos de un conjunto de datos puede revelar que dos variables (esto es, dos propiedades de la población bajo consideración) tienden a variar conjuntamente, como si hubiera una conexión entre ellas. Por ejemplo, un estudio del ingreso anual y la edad de muerte podría resultar en que personas pobres tienden a tener vidas más cortas que personas de mayor ingreso. Las dos variables se dice que están correlacionadas. Sin embargo, no se puede inferir inmediatamente la existencia de una relación de causalidad entre las dos variables. El fenómeno correlacionado podría ser la causa de una tercera, previamente no considerada, llamada variable confusora.
Si la muestra es representativa de la población, inferencias y conclusiones hechas en la muestra pueden ser extendidas a la población completa. Un problema mayor es el de determinar cuán representativa es la muestra extraída. La estadística ofrece medidas para estimar y corregir por aleatoriedad en la muestra y en el proceso de recolección de los datos, así como métodos para diseñar experimentos robustos como primera medida, ver diseño experimental.
El concepto matemático fundamental empleado para entender la aleatoriedad es el de probabilidad. La estadística matemática (también llamada teoría estadística) es la rama de las matemáticas aplicadas que usa la teoría de probabilidades y el análisis matemático para examinar las bases teóricas de la estadística.
El uso de cualquier método estadístico es válido solo cuando el sistema o población bajo consideración satisface los supuestos matemáticos del método. El mal uso de la estadística puede producir serios errores en la descripción e interpretación, lo cual podría llegar a afectar políticas sociales, la práctica médica y la calidad de estructuras tales como puentes y plantas de reacción nuclear.
Incluso cuando la estadística es correctamente aplicada, los resultados pueden ser difíciles de interpretar por un inexperto. Por ejemplo, el significado estadístico de una tendencia en los datos, que mide el grado al cual la tendencia puede ser causada por una variación aleatoria en la muestra, puede no estar de acuerdo con el sentido intuitivo. El conjunto de habilidades estadísticas básicas (y el escepticismo) que una persona necesita para manejar información en el día a día se refiere como «cultura estadística».

Métodos estadísticos[editar]

Estudios experimentales y observacionales[editar]

Un objetivo común para un proyecto de investigación estadística es investigar la causalidad, y en particular extraer una conclusión en el efecto que algunos cambios en los valores de predictores o variables independientes tienen sobre una respuesta o variables dependientes. Hay dos grandes tipos de estudios estadísticos para estudiar causalidad: estudios experimentales y observacionales. En ambos tipos de estudios, el efecto de las diferencias de una variable independiente (o variables) en el comportamiento de una variable dependiente es observado. La diferencia entre los dos tipos es la forma en que el estudio es conducido. Cada uno de ellos puede ser muy efectivo.

Niveles de medición[editar]

Hay cuatro tipos de mediciones o escalas de medición en estadística: niveles de medición (nominal, ordinalintervalo y razón). Tienen diferentes grados de uso en la investigaciónestadística. Las medidas de razón, en donde un valor cero y distancias entre diferentes mediciones son definidas, dan la mayor flexibilidad en métodos estadísticos que pueden ser usados para analizar los datos. Las medidas de intervalo tienen distancias interpretables entre mediciones, pero un valor cero sin significado (como las mediciones de coeficiente intelectual o temperatura en grados Celsius). Las medidas ordinales tienen imprecisas diferencias entre valores consecutivos, pero un orden interpretable para sus valores. Las medidas nominales no tienen ningún rango interpretable entre sus valores.
La escala de medida nominal, puede considerarse la escala de nivel más bajo. Se trata de agrupar objetos en clases. La escala ordinal, por su parte, recurre a la propiedad de «orden» de los números. La escala de intervalos iguales está caracterizada por una unidad de medida común y constante. Es importante destacar que el punto cero en las escalas de intervalos iguales es arbitrario, y no refleja en ningún momento ausencia de la magnitud que estamos midiendo. Esta escala, además de poseer las características de la escala ordinal, permite determinar la magnitud de los intervalos (distancia) entre todos los elementos de la escala. La escala de coeficientes o Razones es el nivel de medida más elevado y se diferencia de las escalas de intervalos iguales únicamente por poseer un punto cero propio como origen; es decir que el valor cero de esta escala significa ausencia de la magnitud que estamos midiendo. Si se observa una carencia total de propiedad, se dispone de una unidad de medida para el efecto. A iguales diferencias entre los números asignados corresponden iguales diferencias en el grado de atributo presente en el objeto de estudio.

Técnicas de análisis estadístico[editar]

Algunas pruebas (tests) y procedimientos para la investigación de observaciones son:

Lenguaje y simbología[editar]

Población y muestra[editar]

  • Población: Es el todo o un conjunto formado por todos los valores existentes, ya sean personasmedidas u objetos que pueden ser expresados mediante una variable y además, tienen una característica; de que son de interés estadístico para un estudio en específico. Al análisis completo de la población también se le suele conocer como censo.
  • Población finita: Es aquella que expresa que es posible sobrepasarse al contar o bien, alcanzarse; por lo tanto, es la que tiene o incluye un número limitado ya sea de objetos, medidas o personas. Por ejemplo: el gasto en comida durante cierto tiempo, un conjunto de calificaciones o bien, el total de alumnos que estudian en una universidad.
  • Población infinita: Es aquella que incluye a un gran número de conjunto de observaciones o medidas que no se pueden alcanzar con el conteo. Esto quiere decir que tiene un número ilimitado de valores, por ejemplo: la producción futura de una máquina o el lanzamiento de dados o una moneda.
  • Muestra: Es aquel subconjunto perteneciente a una población. Esto quiere decir que se conforma por algunos datos de esta, ya sean ciertos objetos, personas, o medidas de la población. Al estudio de este concepto se le suele conocer como muestreo.
  • Muestra representativa: Es aquel subconjunto representativo de una población, pero para que se consideren así se deben seguir ciertos procedimientos de selección o bien, un método de muestreo. Se dice que la muestra adecuada es aquella que contiene características esenciales de la población para lograr el objetivo de hacer generalizaciones con respecto al total de los datos sin examinar cada uno de ellos.

Parámetro[editar]

  • Parámetro: Es la medida de cierta característica numérica de una población que generalmente se expresa mediante símbolos griegos (μ o σ).

Disciplinas especializadas[editar]

Algunos campos de investigación usan la estadística tan extensamente que tienen terminología especializada. Estas disciplinas incluyen:
La estadística es una herramienta básica en negocios y producción. Se usa para entender la variabilidad de sistemas de medición, control de procesos (como en control estadístico de procesos o SPC (CEP)), para compilar datos y para tomar decisiones. En estas aplicaciones es una herramienta clave y probablemente la única herramienta disponible.

Computación estadística[editar]

El incremento rápido y sostenido en el poder de cálculo de la computación desde la segunda mitad del siglo XX ha tenido un sustancial impacto en la práctica de la ciencia estadística. Viejos modelos estadísticos fueron casi siempre de la clase de los modelos lineales. Ahora, complejos computadores junto con apropiados algoritmos numéricos han causado un renacer del interés en modelos no lineales (especialmente redes neuronales y árboles de decisión) y la creación de nuevos tipos tales como modelos lineales generalizados y modelos multinivel.
El incremento en el poder computacional también ha llevado al crecimiento en popularidad de métodos intensivos computacionalmente basados en remuestreo, tales como tests de permutación y de bootstrap, mientras técnicas como el muestreo de Gibbs han hecho los métodos bayesianos más accesibles. La revolución en computadores tiene implicaciones en el futuro de la estadística, con un nuevo énfasis en estadísticas «experimentales» y «empíricas». Un gran número de paquetes estadísticos está ahora disponible para los investigadores. Los sistemas dinámicos y teoría del caos, desde hace una década, empezaron a interesar en la comunidad hispana, pues en la anglosajona de Estados Unidos estaba ya establecida la «conducta caótica en sistemas dinámicos no lineales» con 350 libros para 1997 y empezaban algunos trabajos en los campos de las ciencias sociales y en aplicaciones de la física. También se estaba contemplando su uso en analítica.

Críticas a la estadística[editar]

Hay una percepción general de que el conocimiento estadístico es intencionado y frecuentemente mal usado, encontrando maneras de interpretar los datos que sean favorables al presentador. Un dicho famoso, al parecer de Benjamin Disraeli,20​ es: «Hay tres tipos de mentiras: mentiras pequeñas, mentiras grandes y estadísticas». El popular libro How to lie with statistics (Cómo mentir con las estadísticas en la edición española) de Darrell Huff discute muchos casos de mal uso de la estadística, con énfasis en gráficas malintencionadas. Al escoger (o rechazar o modificar) una cierta muestra, los resultados pueden ser manipulados; por ejemplo, mediante la eliminación selectiva de valores atípicos (outliers). Este puede ser el resultado de fraudes o sesgos intencionales por parte del investigador (Darrel Huff21​). Lawrence Lowell (decano de la Universidad de Harvard) escribió en 1909 que las estadísticas, «como algunos pasteles, son buenas si se sabe quién las hizo y se está seguro de los ingredientes».
Algunos estudios contradicen resultados obtenidos previamente y la población comienza a dudar en la veracidad de tales estudios. Se podría leer que un estudio dice (por ejemplo) que «hacer X reduce la presión sanguínea», seguido por un estudio que dice que «hacer X no afecta la presión sanguínea», seguido por otro que dice que «hacer X incrementa la presión sanguínea». A menudo los estudios se hacen siguiendo diferentes metodologías, o estudios en muestras pequeñas que prometen resultados maravillosos que no son obtenibles en estudios de mayor tamaño. Sin embargo, muchos lectores no notan tales diferencias, y los medios de comunicación simplifican la información alrededor del estudio y la desconfianza del público comienza a crecer.
Sin embargo, las críticas más fuertes vienen del hecho que la aproximación de pruebas de hipótesis, ampliamente usada en muchos casos requeridos por ley o reglamentación, obliga a una hipótesis a ser «favorecida» (la hipótesis nula) y puede también exagerar la importancia de pequeñas diferencias en estudios grandes. Una diferencia que es altamente significativa puede ser de ninguna significancia práctica.
Véase también críticas de prueba de hipótesis y controversia de la hipótesis nula.
En los campos de la psicología y la medicina, especialmente con respecto a la aprobación de nuevos medicamentos por la Food and Drug Administration, críticas de la aproximación de prueba de hipótesis se han incrementado en los años recientes. Una respuesta ha sido un gran énfasis en el p-valor en vez de simplemente reportar si la hipótesis fue rechazada al nivel de significancia  dado. De nuevo, sin embargo, esto resume la evidencia para un efecto pero no el tamaño del efecto. Una posibilidad es reportar intervalos de confianza, puesto que estos indican el tamaño del efecto y la incertidumbre. Esto ayuda a interpretar los resultados, como el intervalo de confianza para un  dado indicando simultáneamente la significancia estadística y el efecto de tamaño.
El p-valor y los intervalos de confianza son basados en los mismos cálculos fundamentales como aquellos para las correspondientes pruebas de hipótesis. Los resultados son presentados en un formato más detallado, en lugar del «sí o no» de las pruebas de hipótesis y con la misma metodología estadística.
Otro tipo de aproximación es el uso de métodos bayesianos. Esta aproximación ha sido, sin embargo, también criticada.
El fuerte deseo de que los medicamentos buenos sean aprobados y que los medicamentos peligrosos o de poco uso sean rechazados crea tensiones y conflictos (errores tipo I y IIen el lenguaje de pruebas de hipótesis).

Enseñanza de la estadística en las ciencias sociales[editar]

Sobre la enseñanza de la estadística en las ciencias sociales, algunas investigaciones “sugieren que los estudiantes aprenden más cuando los profesores usan ejemplos concretos y problemas relevantes para ellos”.22
Para contar con ejemplos concretos y problemas relevantes a los estudiantes, es posible proponer actividades de aprendizaje que vinculen los métodos cuantitativos a los enfoques cualitativos, debido a que estos últimos son utilizados con mayor recurrencia en los planes de estudio de las licenciaturas en Ciencias sociales. Sobre esta combinación de métodos encontramos que una de sus principales virtudes es que “la recopilación de los ricos detalles descriptivos de los datos cualitativos se puede usar para cuantificar y generalizar los resultados”.23
Entre las ventajas de una enseñanza que combine los métodos cuantitativos con los cualitativos se encuentra el que los estudiantes desarrollen la destreza para triangular resultados, lo que disminuye la falibilidad inherente a cada enfoque. Por ejemplo los errores que puedan atribuirse a los datos de origen, dado que los métodos utilizan tipos de datos distintos, serán más confiables los resultados si proceden de una triangulación de métodos.24
Incluso, se puede contemplar la enseñanza de los métodos cuantitativos dentro de los programas de los distintos ejes del currículum académico. Actualmente es común que en las diversas asignaturas se ejercite el uso de los métodos de investigación cualitativos pero no de los cuantitativos. Esto debería cambiar porque “introducir el razonamiento cuantitativo en los cursos sustanciales permite ligar el entrenamiento en métodos cuantitativos, especialmente estadísticos, con los asuntos medulares de las ciencias sociales”.25

Véase también[editar]

Referencias[editar]

  1.  Real Academia Española y Asociación de Academias de la Lengua Española (2014). «estadística»Diccionario de la lengua española (23.ª edición). Madrid: EspasaISBN 978-84-670-4189-7.
  2.  Ver el trabajo de Ian Hacking en The emergence of probability para una historia del desarrollo del concepto de probabilidad matemática.
  3.  Galton, F. (1877). «Typical laws of heredity». Nature 15: 492-553. doi:10.1038/015492a0.
  4.  Stigler, S. M. (1989). «Francis Galton's Account of the Invention of Correlation». Statistical Science 4 (2): 73-79. doi:10.1214/ss/1177012580.
  5.  Pearson, K. (1900). «On the Criterion that a given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it can be reasonably supposed to have arisen from Random Sampling». Philosophical Magazine Series 5 50 (302): 157-175. doi:10.1080/14786440009463897.
  6.  «Karl Pearson (1857–1936)». Department of Statistical Science – University College London. Archivado desde el original el 25 de septiembre de 2008.
  7.  Stanley, J. C. (1966). «The Influence of Fisher's "The Design of Experiments" on Educational Research Thirty Years Later». American Educational Research Journal 3 (3): 223. doi:10.3102/00028312003003223.
  8.  Box, J. F. (febrero de 1980). «R. A. Fisher and the Design of Experiments, 1922-1926». The American Statistician 34 (1): 1-7. JSTOR 2682986doi:10.2307/2682986.
  9.  Yates, F. (junio de 1964). «Sir Ronald Fisher and the Design of Experiments». Biometrics 20 (2): 307-321. JSTOR 2528399doi:10.2307/2528399.
  10.  Stanley, Julian C. (1966). «The Influence of Fisher's "The Design of Experiments" on Educational Research Thirty Years Later». American Educational Research Journal 3 (3): 223-229. JSTOR 1161806doi:10.3102/00028312003003223.
  11.  Agresti, Alan; David B. Hichcock (2005). «Bayesian Inference for Categorical Data Analysis»Statistical Methods & Applications 14 (14): 298. doi:10.1007/s10260-005-0121-y.
  12.  Edwards, A. W. F. (1998). «Natural Selection and the Sex Ratio: Fisher's Sources». American Naturalist 151 (6): 564-569. PMID 18811377doi:10.1086/286141.
  13.  Fisher, R. A. (1915) «The evolution of sexual preference.» Eugenics Review (7) 184:192.
  14.  Fisher, R. A. (1930) The Genetical Theory of Natural SelectionISBN 0-19-850440-3
  15.  Edwards, A. W. F. (2000) Perspectives: Anecdotal, Historial and Critical Commentaries on Genetics. The Genetics Society of America (154) 1419:1426
  16.  Andersson, M. (1994) Sexual selection. ISBN 0-691-00057-3
  17.  Andersson, M. y Simmons, L. W. (2006) «Sexual selection and mate choice.» Trends, Ecology and Evolution (21) 296:302.
  18.  Gayon, J. (2010) «Sexual selection: Another Darwinian process.» Comptes Rendus Biologies (333) 134:144.
  19.  tercerainformación.es. «tercerainformación.es». Consultado el 29 de octubre de 2018.
  20.  Cf. Damned lies and statistics: untangling numbers from the media, politicians, and activists, del profesor Joel Best. Best atribuye este dicho a Disraeli, y no a Mark Twain u otros autores como se cree popularmente.
  21.  Darrell Huff. Cómo mentir con estadísticas, Barcelona: Sagitario, 1965
  22.  Bridges, G. S.; Gillmore, G. M.; Pershing, J. L.; Bates, K. A. (1998). «Teaching Quantitative Research Methods : A Quasi-Experimental Analysis. Teaching Sociology»American Sociological Association 26 (1): 15. Consultado el 5 de marzo de 2016.
  23.  Abusabha, R.; Woelfel, M. (2003). «Qualitative vs quantitative methods: Two opposites that make a perfect match»Journal of the American Dietetic Association 103 (5): 567. Consultado el 5 de marzo de 2016.
  24.  Sechrest, L.; Sidani, S. (1995). «Quantitative and qualitative methods: Is There an Alternative?»Evaluation and Program Planning 18 (1): 84. doi:10.1016/0149-7189(94)00051-X. Consultado el 5 de marzo de 2016.
  25.  Bridges, G. S.; Gillmore, G. M.; Pershing, J. L.; Bates, K. A. (1998). «Teaching Quantitative Research Methods : A Quasi-Experimental Analysis. Teaching Sociology»American Sociological Association 26 (1): 24. Consultado el 5 de marzo de 2016.

Bibliografía[editar]

No hay comentarios:

Publicar un comentario